Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474337

RESUMO

Inflammatory bowel disease (IBD) is marked by a state of chronic energy deficiency that limits gut tissue wound healing. This energy shortfall is partially due to microbiota dysbiosis, resulting in the loss of microbiota-derived metabolites, which the epithelium relies on for energy procurement. The role of microbiota-sourced purines, such as hypoxanthine, as substrates salvaged by the colonic epithelium for nucleotide biogenesis and energy balance, has recently been appreciated for homeostasis and wound healing. Allopurinol, a synthetic hypoxanthine isomer commonly prescribed to treat excess uric acid in the blood, inhibits the degradation of hypoxanthine by xanthine oxidase, but also inhibits purine salvage. Although the use of allopurinol is common, studies regarding how allopurinol influences the gastrointestinal tract during colitis are largely nonexistent. In this work, a series of in vitro and in vivo experiments were performed to dissect the relationship between allopurinol, allopurinol metabolites, and colonic epithelial metabolism and function in health and during disease. Of particular significance, the in vivo investigation identified that a therapeutically relevant allopurinol dose shifts adenylate and creatine metabolism, leading to AMPK dysregulation and disrupted proliferation to attenuate wound healing and increased tissue damage in murine experimental colitis. Collectively, these findings underscore the importance of purine salvage on cellular metabolism and gut health in the context of IBD and provide insight regarding the use of allopurinol in patients with IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Alopurinol , Purinas/metabolismo , Hipoxantina/metabolismo , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico
2.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496569

RESUMO

Colorectal cancer has been linked to chronic colitis and red meat consumption, which can increase colonic iron and heme. Heme oxygenase-1 ( Hmox1 ) metabolizes heme and releases ferrous iron, but its role in colonic tumorigenesis is not well-described. Recent studies suggest that ferroptosis, the iron-dependent form of cell death, protects against colonic tumorigenesis. Ferroptosis culminates in excessive lipid peroxidation that is constrained by the antioxidative glutathione pathway. We observed increased mucosal markers of ferroptosis and glutathione metabolism in the setting of murine and human colitis, as well as murine colonic neoplasia. We obtained similar results in murine and human colonic epithelial organoids exposed to heme and the ferroptosis activator erastin, especially induction of Hmox1 . RNA sequencing of colonic organoids from mice with deletion of intestinal epithelial Hmox1 (Hmox1 ΔIEC ) revealed increased ferroptosis and activated glutathione metabolism after heme exposure. In a colitis-associated cancer model we observed significantly fewer and smaller tumors in Hmox1 ΔIEC mice compared to littermate controls. Transcriptional profiling of Hmox1 ΔIEC tumors and tumor organoids revealed increased ferroptosis and oxidative stress markers in tumor epithelial cells. In total, our findings reveal ferroptosis as an important colitis-associated cancer signature pathway, and Hmox1 as a key regulator in the tumor microenvironment.

3.
J Clin Invest ; 134(4)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38113112

RESUMO

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colonic lymphocytes to indole increased the expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a unique therapeutic pathway for RA and SpA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Microbiota , Camundongos , Humanos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Triptofano , Artrite Reumatoide/genética , Colágeno
4.
Microbiome ; 11(1): 256, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978573

RESUMO

BACKGROUND: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS: Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS: These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Ileíte , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Ileíte/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Celulas de Paneth , Butiratos/metabolismo , Mitocôndrias/metabolismo , Mucosa Intestinal/metabolismo
5.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873395

RESUMO

Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.

6.
Gut Microbes ; 15(2): 2267706, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37822087

RESUMO

Microbiota-derived short-chain fatty acids, including butyrate (BA), have multiple beneficial health effects. In the colon, BA concentrations range from 10 to 20 mM and up to 95% is utilized as energy by the mucosa. BA plays a key role in epithelial-barrier regulation and anti-inflammation, and regulates cell growth and differentiation, at least in part, due to its direct influence on stabilization of the transcription factor hypoxia-inducible factor (HIF). It remains unclear whether BA is the optimal metabolite for such a response. In this study, we explored metabolite mimicry as an attractive strategy for the biological response to HIF. We discovered that 4-mercapto butyrate (MBA) stabilizes HIF more potently and has a longer biological half-life than BA in intestinal epithelial cells (IECs). We validated the MBA-mediated HIF transcriptional activity through the induction of classic HIF gene targets in IECs and enhanced epithelial barrier formation in vitro. In-vivo studies with MBA revealed systemic HIF stabilization in mice, which was more potent than its parent BA metabolite. Mechanistically, we found that MBA enhances oxygen consumption and that the sulfhydryl group is essential for HIF stabilization, but exclusively as a four-carbon SCFA. These findings reveal a combined biochemical mechanism for HIF stabilization and provide a foundation for the discovery of potent metabolite-like scaffolds.


Assuntos
Butiratos , Microbioma Gastrointestinal , Camundongos , Animais , Butiratos/farmacologia , Butiratos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Ácidos Graxos Voláteis/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
Mucosal Immunol ; 16(6): 817-825, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716510

RESUMO

Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CK brain type/CK mitochondrial form (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length, and histology). In a broad cytokine profiling, CKdKO mice expressed near absent interferon gamma (IFN-γ) levels. We identified losses in IFN-γ production from CD4+ and CD8+ T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. Extensions of these studies identified basal stabilization of the transcription factor hypoxia-inducible factor in CKdKO splenocytes and pharmacological stabilization of hypoxia-inducible factor resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4+ and CD8+ T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Creatina Quinase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Creatina/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interferon gama/metabolismo , Inflamação/metabolismo , Hipóxia/metabolismo , Sulfato de Dextrana/farmacologia , Colo/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
8.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333192

RESUMO

Inflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CKB/CKMit (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length and histology). In a broad cytokine profiling, CKdKO mice expressed near absent IFN-γ levels. We identified losses in IFN-γ production from CD4 + and CD8 + T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. We identified basal stabilization of the transcription factor hypoxia-inducible factor (HIF) in CKdKO splenocytes and pharmacological stabilization of HIF resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4 + and CD8 + T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.

9.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338984

RESUMO

The liver can fully regenerate after partial resection, and its underlying mechanisms have been extensively studied. The liver can also rapidly regenerate after injury, with most studies focusing on hepatocyte proliferation; however, how hepatic necrotic lesions during acute or chronic liver diseases are eliminated and repaired remains obscure. Here, we demonstrate that monocyte-derived macrophages (MoMFs) were rapidly recruited to and encapsulated necrotic areas during immune-mediated liver injury and that this feature was essential in repairing necrotic lesions. At the early stage of injury, infiltrating MoMFs activated the Jagged1/notch homolog protein 2 (JAG1/NOTCH2) axis to induce cell death-resistant SRY-box transcription factor 9+ (SOX9+) hepatocytes near the necrotic lesions, which acted as a barrier from further injury. Subsequently, necrotic environment (hypoxia and dead cells) induced a cluster of complement 1q-positive (C1q+) MoMFs that promoted necrotic removal and liver repair, while Pdgfb+ MoMFs activated hepatic stellate cells (HSCs) to express α-smooth muscle actin and induce a strong contraction signal (YAP, pMLC) to squeeze and finally eliminate the necrotic lesions. In conclusion, MoMFs play a key role in repairing the necrotic lesions, not only by removing necrotic tissues, but also by inducing cell death-resistant hepatocytes to form a perinecrotic capsule and by activating α-smooth muscle actin-expressing HSCs to facilitate necrotic lesion resolution.


Assuntos
Actinas , Neoplasias Hepáticas , Humanos , Actinas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Macrófagos/metabolismo , Células Estreladas do Fígado/metabolismo , Necrose/metabolismo , Necrose/patologia , Neoplasias Hepáticas/metabolismo
10.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37163027

RESUMO

For many intracellular pathogens, their virulence depends on an ability to spread between cells of an epithelial layer. For intercellular spread to occur, these pathogens deform the plasma membrane into a protrusion structure that is engulfed by the neighboring cell. Although the polymerization of actin is essential for spread, how these pathogens manipulate the actin cytoskeleton in a manner that enables protrusion formation is still incompletely understood. Here, we identify the mammalian actin binding protein synaptopodin as required for efficient intercellular spread. Using a model cytosolic pathogen, Shigella flexneri , we show that synaptopodin contributes to organization of actin around bacteria and increases the length of the actin tail at the posterior pole of the bacteria. We show that synaptopodin presence enables protrusions to form and to resolve at a greater rate, indicating that greater stability of the actin tail enables the bacteria to push against the membrane with greater force. We demonstrate that synaptopodin recruitment around bacteria requires the bacterial protein IcsA, and we show that this recruitment is further enhanced in a type 3 secretion system dependent manner. These data establish synaptopodin as required for intracellular bacteria to reprogram the actin cytoskeleton in a manner that enables efficient protrusion formation and enhance our understanding of the cellular function of synaptopodin. Authors Summary: Intercellular spread is essential for many cytosolic dwelling pathogens during their infectious life cycle. Despite knowing the steps required for intercellular spread, relatively little is known about the host-pathogen interactions that enable these steps to occur. Here, we identify a requirement for the actin binding protein synaptopodin during intercellular spread by cytosolic bacteria. We show synaptopodin is necessary for the stability and recruitment of polymerized actin around bacteria. We also demonstrate synaptopodin is necessary to form plasma membrane structures known as protrusions that are necessary for the movement of these bacteria between cells. Thus, these findings implicate synaptopodin as an important actin-binding protein for the virulence of intracellular pathogens that require the actin cytoskeleton for their spread between cells.

11.
Am J Pathol ; 193(8): 1013-1028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37169343

RESUMO

Crohn disease (CD) is a highly morbid chronic inflammatory disease. Although many patients with CD also develop fibrostenosing complications, there are no medical therapies for intestinal fibrosis. This is due, in part, to a lack of high-fidelity biomimetic models to enhance understanding and drug development, which highlights the need for developing in vivo models of inflammatory bowel disease-related intestinal fibrosis. This study investigates whether the TNFΔARE mouse, a model of ileal inflammation, also develops intestinal fibrosis. Several clinically relevant outcomes were studied, including features of structural fibrosis, histologic fibrosis, and gene expression. These include the use of a new luminal casting technique, traditional histologic outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNFΔARE mice as well as in cohorts of numerous ages. At >24 weeks of age, TNFΔARE mice developed structural, histologic, and transcriptional changes of ileal fibrosis. Protein and RNA expression profiles showed changes as early as 6 weeks, coinciding with histologic changes as early as 14 to 15 weeks. Overt structural fibrosis was delayed until at least 16 weeks and was most developed after 24 weeks. This study found that the TNFΔARE mouse is a viable and highly tractable model of ileal fibrosis. This model and the techniques used herein can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis.


Assuntos
Doença de Crohn , Intestinos , Camundongos , Animais , Intestinos/patologia , Doença de Crohn/patologia , Inflamação/patologia , Íleo/metabolismo , Fibrose
12.
Front Immunol ; 14: 1124774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742292

RESUMO

On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.


Assuntos
Inflamação , Mucosite , Humanos , Hipóxia , Mucosa/metabolismo , Neutrófilos
13.
Immunometabolism (Cobham) ; 5(1): e0016, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36644501

RESUMO

Active episodes of inflammatory bowel disease (IBD), which include ulcerative colitis and Crohn's disease, coincide with profound shifts in the composition of the microbiota and host metabolic energy demand. Intestinal epithelial cells (IEC) that line the small intestine and colon serve as an initial point for contact for the microbiota and play a central role in innate immunity. In the 1980s, Roediger et al proposed the hypothesis that IBD represented a disease of diminished mucosal nutrition and energy deficiency ("starved gut") that strongly coincided with the degree of inflammation. These studies informed the scientific community about the important contribution of microbial-derived metabolites, particularly short-chain fatty acids (SCFA) such as butyrate, to overall energy homeostasis. Decades later, it is appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places inordinate demands on energy acquisition within the mucosa, particularly during active inflammation. Here, we review the topic of tissue energetics in mucosal health and disease from the original perspective of that proposed by the starved gut hypothesis.

14.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36712048

RESUMO

Background & Aims: Crohn's disease (CD) is a highly morbid chronic inflammatory disease. The majority of CD patients also develop fibrostenosing complications. Despite this, there are no medical therapies for intestinal fibrosis. This is in part due to lack of high-fidelity biomimetic models to enhance understanding and drug development. There is a need to develop in vivo models of inflammatory bowel disease-related intestinal fibrosis. We sought to determine if the TNF ΔARE mouse, a model of ileal inflammation, may also develop intestinal fibrosis. Methods: Several clinically relevant outcomes were studied including features of structural fibrosis, histological fibrosis, and gene expression. These include the use of a luminal casting technique we developed, traditional histological outcomes, use of second harmonic imaging, and quantitative PCR. These features were studied in aged TNF ΔARE mice as well as in cohorts of numerous ages. Results: At ages of 24+ weeks, TNF ΔARE mice develop structural, histological, and genetic changes of ileal fibrosis. Genetic expression profiles have changes as early as six weeks, followed by histological changes occurring as early as 14-15 weeks, and overt structural fibrosis delayed until after 24 weeks. Discussion: The TNF ΔARE mouse is a viable and highly tractable model of intestinal fibrosis. This model and the techniques employed can be leveraged for both mechanistic studies and therapeutic development for the treatment of intestinal fibrosis.

15.
Cell Rep ; 40(13): 111409, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36170839

RESUMO

The intestinal mucosa exists in a state of "physiologic hypoxia," where oxygen tensions are markedly lower than those in other tissues. Intestinal epithelial cells (IECs) have evolved to maintain homeostasis in this austere environment through oxygen-sensitive transcription factors, including hypoxia-inducible factors (HIFs). Using an unbiased chromatin immunoprecipitation (ChIP) screen for HIF-1 targets, we identify autophagy as a major pathway induced by hypoxia in IECs. One important function of autophagy is to defend against intracellular pathogens, termed "xenophagy." Analysis reveals that HIF is a central regulator of autophagy and that in vitro infection of IECs with Salmonella Typhimurium results in induction of HIF transcriptional activity that tracks with the clearance of intracellular Salmonella. Work in vivo demonstrates that IEC-specific deletion of HIF compromises xenophagy and exacerbates bacterial dissemination. These results reveal that the interaction between hypoxia, HIF, and xenophagy is an essential innate immune component for the control of intracellular pathogens.


Assuntos
Macroautofagia , Infecções por Salmonella , Humanos , Hipóxia/metabolismo , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Infecções por Salmonella/metabolismo , Fatores de Transcrição/metabolismo
16.
Am J Physiol Cell Physiol ; 323(3): C866-C878, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912990

RESUMO

The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.


Assuntos
Mucosa Intestinal , Cicatrização , Animais , Fibrose , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mamíferos
17.
J Leukoc Biol ; 112(6): 1543-1553, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35674095

RESUMO

Neutrophil (PMN) infiltration during active inflammation imprints changes in the local tissue environment. Such responses are often accompanied by significant extracellular acidosis that result in predictable transcriptional responses. In this study, we explore the mechanisms involved in inflammatory acidification as a result of PMN-intestinal epithelial cell (IEC) interactions. Using recently developed tools, we revealed that PMN transepithelial migration (TEM)-associated inflammatory acidosis is dependent on the total number of PMNs present during TEM and is polarized toward the apical surface. Extending these studies, we demonstrate that physical separation of the PMNs and IECs prevented acidification, whereas inhibition of PMN TEM using neutralizing antibodies enhanced extracellular acidification. Utilizing pharmaceutical inhibitors, we demonstrate that the acidification response is independent of myeloperoxidase and dependent on reactive oxygen species generated during PMN TEM. In conclusion, inflammatory acidosis represents a polarized PMN-IEC-dependent response by an as yet to be fully determined mechanism.


Assuntos
Mucosa Intestinal , Neutrófilos , Adesão Celular , Células Cultivadas , Concentração de Íons de Hidrogênio
18.
Front Immunol ; 13: 840719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693797

RESUMO

IL-38 is a recently discovered cytokine and member of the IL-1 Family. In the IL-1 Family, IL-38 is unique because the cytokine is primarily a B lymphocyte product and functions to suppress inflammation. Studies in humans with inflammatory bowel disease (IBD) suggest that IL-38 may be protective for ulcerative colitis or Crohn's disease, and that IL-38 acts to maintain homeostasis in the intestinal tract. Here we investigated the role of endogenous IL-38 in experimental colitis in mice deficient in IL-38 by deletion of exons 1-4 in C57 BL/6 mice. Compared to WT mice, IL-38 deficient mice subjected to dextran sulfate sodium (DSS) showed greater severity of disease, more weight loss, increased intestinal permeability, and a worse histological phenotype including increased neutrophil influx in the colon. Mice lacking IL-38 exhibited elevated colonic Nlrp3 mRNA and protein levels, increased caspase-1 activation, and the concomitant increased processing of IL-1ß precursor into active IL-1ß. Expression of IL-1α, an exacerbator of IBD, was also upregulated. Colonic myleloperoxidase protein and Il17a, and Il17f mRNA levels were higher in the IL-38 deficient mice. Daily treatment of IL-38 deficient mice with an NLRP3 inhibitor attenuated diarrhea and weight loss during the recovery phase. These data implicate endogenous IL-38 as an anti-inflammatory cytokine that reduces DSS colitis severity. We propose that a relative deficiency of IL-38 contributes to IBD by disinhibition of the NLRP3 inflammasome.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Interleucina-1/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Citocinas , Sulfato de Dextrana , Deleção de Genes , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro , Redução de Peso
19.
mBio ; 13(3): e0048022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575513

RESUMO

Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.


Assuntos
Antibacterianos , Salmonella enterica , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Guanosina Trifosfato , Testes de Sensibilidade Microbiana , NADH Desidrogenase/metabolismo , Nucleosídeos/farmacologia , Salmonella enterica/metabolismo
20.
Cells ; 11(6)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35326394

RESUMO

Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell-cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell-cell interactions and ultimately mucosal permeability in health and disease.


Assuntos
Mucosa Intestinal , Junções Íntimas , Comunicação Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...